CFK-Verbund-Tragfähigkeitserhöhung infolge passiven Anpressdrucks

Increase of the CFK-bond capacity due to passive contact pressure

Husemann, U.; Budelmann, H.

1. Einleitung

Bei nachträglicher Bauteilverstärkungen mit CFK-Lamellen ist das Lamellenende nach geltender Zulassung durch eine äußere konstruktive Umschließung durch Stahlbügel oder CF-Gelegeumschließung gegen Lamellenentkopplung (LEK) zu sichern. Bei LEK-Erscheinungen wird durch die Entkopplungsbehinderung der Umschließung ein passiver (selbstinduzierter) Anpressdruck $\sigma_{n,si}$ bzw. F_{AP} aufgebaut, der traglaststeigernde Wirkung hat. Innerhalb dieses Forschungsvorhabens soll die Traglaststeigerung in Abhängigkeit unterschiedlicher Umschließungsmaterialien und Geometrien untersucht und abgebildet, sowie für die Bemessung ein Ingenieurmodell entwickelt werden.

2. Ausgangssituation

Im Gegensatz zur einbetonierten Bewehrung, tritt bei CFK- LEK sowohl eine horizontale wie auch vertikale Verschiebung der Lamelle, aufgrund der verbleibenden Zuschlagskörner in der Klebstofffuge ein, Bild 1. Das Versagen bei LEK ist damit unangekündigt und spröde.

Bild 1: Verbundtragverhalten einbetonierter und aufgeklebter Bewehrung

Wird die vertikale Verschiebung der Lamelle durch Umschließungsbügel behindert, baut sich der Anpressdruck F_{AP} auf. In Bild 2 ist der Mechanismus der Lamellenentkopplung unterhalb eines Umschließungsbügels dargestellt. Am Punkt 1 ist noch keine Lamellenentkopplung vorhanden. Bei Steigerung der Lamellenzugkraft F_{I}

Institut für Baustoffe, Massivbau und Brandschutz (iBMB) der Technischen Universität Braunschweig Materialprüfanstalt (MPA) für das Bauwesen bildet sich ein oberflächennaher Betonriss unterhalb des Umschließungsbügels aus. In Abhängigkeit zur Rissöffnung w stellt sich der Abpressdruck F_{AP} ein und führt zu der Traglaststeigerung. Erreicht die Lamellenentkopplung den Punkt 3 und beträgt die Restverbundlänge gerade noch $I_{t,max}$ befindet sich der Lamellenverbund unmittelbar vor vollständiger Lamellenentkopplung und dem Ausfall der Gesamtkonstruktion. Aufgrund der Umschließung wird die Reibung im Riss erhöht was zu einer Steigerung der Lamellenzugkraft F_1 führt.

Bild 2: Ausbildung des oberflächennahen Betonrisses unterhalb des Umschließungsbügels

In Bild 3 ist die Wirkungsweise des passiven und aktiven Anpressdrucks dargestellt. Beim passiven Anpressdruck hängt die Rissöffnungsarbeit $W_{R,si}$ und damit die Normalspannung $\sigma_{n,si}$ die auf die Lamelle wirkt von der Rissöffnung w ab. Mit steigender Rissöffnung w nimmt die Normalspannung zu. Beim aktiven Anpresdruck ist die Rissöffnungsarbeit $W_{R,a}$ und damit die Normalspannung $\sigma_{n,a}$ konstant und wirkt von Anfang an.

Bild 3: Aufbau des passiven $\sigma_{n,si}$ und aktiven $\sigma_{n,a}$ Anpressdrucks abhängig von der Rissöffnung w

Beethovenstraße 52 38106 Braunschweig Tel.: +49 (0) 531 391 5400 Fax: +49 (0) 531 391 5900 E-Mail: info@ibmb.tu-bs.de http://www.ibmb.tu-braunschweig.de E-Mail: info@mpa.tu-bs.de http://www.mpa.tu-bs.de

3. Versuchsdurchführung und Ergebnisse

Über Zugversuche zur Bestimmung der Rissöffnungsbehinderung konnten Kennlinien aufgestellt werden, die den Zusammenhang zwischen Rissöffnung w und Zugkraft F_u darstellen. In Bild 4 ist der Probekörper dargestellt.

Bild 4: zentrische Zugversuche zur Bestimmung der Rissöffnungsbehinderung

Bild 5 zeigt beispielhaft an Stahlbügelumschließungen die experimentell gewonnen Ergebnisse.

Bild 5: Kennlinien für Stahlbügelumschließungen

In den anschließenden Verbundversuchen wurde über teilweise vorgespannte Tellerfederpakete der Anpressdruck F_{AP} , bei entstehender Lamellenentkopplung auf die Lamelle aufgebracht und die Lamellenzugkraft F_{I} ermittelt, Bild 6.

Bild 6: Verbundversuche mit selbstinduzierten Anpressdruck F_{AP}

Institut für Baustoffe, Massivbau und Brandschutz (iBMB) der Technischen Universität Braunschweig Materialprüfanstalt (MPA) für das Bauwesen Es konnte ein direkter Zusammenhang zwischen dem Anpressdruck F_{AP} und der Lamellenzugkraft F_{I} gefunden und abgebildet werden.

Über abschließende Bauteilversuche sollen die Ergebnisse auf Baukörper mit praxisüblichen Abmessungen übertragen werden.

Bild 7: Versuche mit praxisüblichen Umschließungen

Bild 8 zeigt die Gegenüberstellung zwischen den experimentell gewonnen und berechneten Ergebnisse. Dabei ist eine gute Übereinstimmung mit dem in [1,2] vorgestellten Modell festzustellen.

Bild 8: Vergleich zwischen Versuchs- und Rechenergebnis

4. Literatur

- /1/ Husemann, U.; Budelmann, H.: " Increase of the Bond Capacity of Externally Bonded CFRP Plates no RC structures due to Self-induced Contact Pressure" FRPRCS-8 University of Patras, Patras, Greece, July 16-18, 2007 ISBN 978-960-89691-0-0
- /2/ Husemann, U.; Budelmann, H.: "Influence of the external enclousure of RC beams strengthened with CFRP plates", Proceedings of the 4th International Conference on FRP Composites in Civil Engineeting, CICE2008 July 22-24 Zürich, ISBN 978-3-905594-50-8

Beethovenstraße 52 38106 Braunschweig Tel.: +49 (0) 531 391 5400 Fax: +49 (0) 531 391 5900

Institut für Baustoffe, Massivbau und Brandschutz (iBMB) der Technischen Universität Braunschweig Materialprüfanstalt (MPA) für das Bauwesen Beethovenstraße 52 38106 Braunschweig Tel.: +49 (0) 531 391 5400 Fax: +49 (0) 531 391 5900 E-Mail: info@ibmb.tu-bs.de http://www.ibmb.tu-braunschweig.de E-Mail: info@mpa.tu-bs.de http://www.mpa.tu-bs.de

